Industriële fabricage
Industrieel internet der dingen | Industriële materialen | Onderhoud en reparatie van apparatuur | Industriële programmering |
home  MfgRobots >> Industriële fabricage >  >> Manufacturing Technology >> Productieproces

RTC-gebaseerde klok

Componenten en benodigdheden

Arduino Nano R3
× 1
Real Time Clock (RTC)
Ik heb de RTC-module gebruikt op basis van ds1307. Maakt het werk een stuk makkelijker. Maar je zou er zelf een kunnen maken, het is heel gemakkelijk.
× 1
4-cijferig led-display met zeven segmenten
× 1
vrouwelijke koptekst enkele rij
× 3
geperforeerde plaat
neem dit als je dit project wilt solderen en presentabel wilt maken. Om het solderen gemakkelijk te maken, koop een soldeerbord met sporen zoals een broodplankje.
× 1
Jumperdraden (algemeen)
× 25
Mannelijke kop 40 positie 1 rij (0,1")
× 1

Benodigde gereedschappen en machines

Soldeerbout (algemeen)
multimeter
Elk project heeft een multimeter nodig. Dus investeer in een standaard paar, het zal minstens 4 jaar werken en kan veel meer zijn als je weet hoe je het moet repareren. U hebt dit nodig om de connectiviteit van uw soldeerwerk te controleren en om de stroom die door het circuit wordt opgenomen te controleren.

Apps en online services

Arduino IDE
Arduino Fritzing

Over dit project

Dit is een heel eenvoudig en eenvoudig te monteren digitale klok die is gemaakt met behulp van de RTC DS1307 IC. Met een LCD-scherm. Het geeft eenvoudig de tijd weer op een 4-cijferig zevensegmentendisplay. De code kan ook eenvoudig worden aangepast om hem extra functionaliteit te geven, zoals een alarm, alles wat je nodig hebt is een beetje fantasie en vindingrijkheid. Dit project is gemaakt als opstapje naar betere en ingewikkeldere dingen, en ik wilde iets cools maken om in mijn kamer te laten zien.

Dus genoeg gezegd, ik zal elk klein detail in dit bericht opnemen, inclusief de problemen die ik tegenkwam tijdens het solderen op de PCB en hoe ik deze problemen heb opgelost.

STAP 1:Componenten

RTC-module

De DS1307-chip is echt geweldig omdat hij de tijd kan bijhouden, zelfs tijdens het uitschakelen. Het is gemakkelijk te koppelen met de Arduino en er zijn veel bibliotheken beschikbaar om met deze module te werken. De RTC communiceert met de Arduino via het I2C-protocol. Maak je geen zorgen over de details van het protocol dat de pinnen A4 en A5 op de Arduino nano worden gebruikt voor I2C-communicatie.

  • SDA - A4
  • SCL - A5 

We hebben de DS-pin niet nodig voor dit project.

Het enige nadeel is dat het niet zo nauwkeurig is als we zouden willen. De chip is erg gevoelig voor tijdsverloop en drijft heel gemakkelijk af van de werkelijke tijd, afhankelijk van de temperatuur.

OPMERKING- Zorg ervoor dat u de GND- en Vcc-pinnen correct aansluit. De Vcc wordt (in de module) voor de GND-pin geplaatst. Ik heb de mijne meerdere keren in omgekeerde polariteit aangesloten en hij wordt erg snel erg heet. Dus als u de polariteit omgekeerd wilt aansluiten, raakt u de knoopcel aan wanneer u deze AAN zet en schakelt u hem snel UIT als u merkt dat hij heet wordt.

Ploegenregister (74HC595)

  • Het Shift-register 74HC595 was de chip die dit mogelijk maakte dankzij de techniek van multiplexen. Beginners zijn niet bang voor deze eng uitziende term, het is leuk en je zult blij zijn dat je het geleerd hebt.
  • De 595 heeft 16 pinnen en we zullen twee schuifregisters gebruiken om te communiceren met het 4-cijferige 7-segments display.
  • Het eerste schuifregister wordt gebruikt om de segmenten op te lichten en het tweede schuifregister wordt gebruikt om te selecteren welk cijfer ik zal oplichten.
  • Dankzij de techniek van multiplexen gaat het schakelen tussen cijfers zo snel. Het lijkt alsof alle cijfers tegelijkertijd worden weergegeven.

OPMERKING:deze chips zijn redelijk betrouwbaar, maar ik kreeg toevallig verschillende defecte. In sommige chips werkten de Q0 en Q1 niet. Sommigen hadden de Q3 intern geaard (constructiefout). Degene die ik nu in mijn project heb zijn ook niet helemaal perfect. Een van hen heeft zijn Q7 defect, dus toen ik ermee werkte, moest ik ervoor zorgen dat mijn verbindingen exact waren, en toen ze nog steeds niet werkten, moest ik de pinnen controleren met behulp van de continuïteitsfunctie van mijn multimeter. Al met al klaag ik niet, want het is allemaal een middel om kleine obstakels te leren overwinnen tijdens het uitvoeren van een project.

4-cijferig display met zeven segmenten

Ik heb een generiek 4-cijferig segment gebruikt (Common Anode ). Het heeft 12 pinnen, de nummering begint linksonder en eindigt bij de pin linksboven. Elk segment kan cijfers en een decimale punt weergeven. Dus aangezien ik niet de cool uitziende dubbele punt heb die typisch is voor digitale klokken, moest ik het doen met de decimale punt van het tweede cijfer. Dit zijn geweldige displays als het uw primaire doel is om cijfers weer te geven.

OPMERKING:deze kunnen behoorlijk lastig zijn om te werken voor beginners, omdat de segmenten a-g niet in dezelfde lijn staan. Wees voorzichtig en sluit ze niet aan op de 5v-voeding zonder stroombegrenzende weerstand.

Ik heb hiervoor een schema bijgevoegd en het spreekt voor zich.

Het schema heeft niet hetzelfde type display als ik in het project heb gebruikt, dus hier zijn de pinverbindingen van het schuifregister naar het segment.

Segment          Pinnr. op het display           Shift register pin

A                                     11                                             15

B                                     7                                               1

C                                     4                                              2

D                                     2                                              3

E                                      1                                              4

F                                     10                                             5

G                                     5                                              6

Decimaal                         3                                              7

D1                                   12                                            15 (2e 595)

D2                                   9                                             1(2e 595)

D3                                   8                                             2 (2e 595)

D4                                  6                                              3 (2e 595)

Dit project is goedkoop en gemakkelijk te maken, maar vereist een beetje geduld en doorzettingsvermogen (als je bereid bent een stap verder te gaan om het op de printplaat te solderen). Als je het gewoon voor de lol wilt proberen, duurt het amper 2 uur.

Geef alstublieft uw feedback over hoe ik dit kan verbeteren en als er iets is dat niet duidelijk in de post wordt vermeld.

Code

  • Klokcode
  • Stel de tijd in
  • RealTimeClockDS1307.cpp
  • Leesmij
  • RealTimeClockDS1307.h
  • een ander bestand
  • RTClib-bestanden
  • library.properties(name)
  • RTClib
  • RTClib
  • README.md
  • RTClib.cpp
  • RTClib.h
Klokcode Arduino
De code maakt gebruik van de RTC-bibliotheek en de I2C-bibliotheek. U hebt deze bibliotheken nodig om het programma uit te voeren. Dit programma is voor weergave van het type Common Anode.
#include #include#include RTC_DS1307 RTC;int temp, inc, hours1, minut, add =11;int UUR, MINUT, TWEEDE;int latchPin =3; //pin 12 op de 595 o3 3int dataPin =4; //pin 14 op de 595 of 4int klokPin =2; //pin 11 op de 595 of 2int shift =256;int eenheden, tientallen, honderden, duizenden;int x;int y;const int alarmHour =17;const int alarmMinute =26;void setup() { Serial.begin (9600 ); pinMode (LatchPin, OUTPUT); pinMode (dataPin, UITGANG); pinMode(clockPin, OUTPUT); pinMode(13, UITGANG); Draad.begin(); RTC.begin(); if (!RTC.isrunning()) { RTC.adjust(DateTime(__DATE__, __TIME__)); }}void loop() { int temp =0, val =1, temp4; DateTime nu =RTC.now(); UUR =nu.uur(); MINUT =nu.minuut(); //Serial.println(MINUT); if (UUR <10) { honderden =UUR; duizenden =UUR/10; } else if (UUR>=10 &&UUR <24) { honderden =UUR % 10; duizenden =UUR / 10; } if (MINUT <=9) { eenheden =MINUT; tientallen =MINUT/10; } else if (MINUT> 9 &&MINUT <=60) { units =MINUT % 10; tientallen =MINUT / 10; } switch (eenheden) { case 0://0 digitalWrite (latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 192 ); digitalWrite (LatchPin, HOOG); pauze; geval 1://1 digitalWrite (latchPin, LAAG); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 249); digitalWrite (LatchPin, HOOG); pauze; geval 2://2 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 164); digitalWrite (LatchPin, HOOG); pauze; geval 3://3 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 176); digitalWrite (LatchPin, HOOG); pauze; geval 4://4 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 153); digitalWrite (LatchPin, HOOG); pauze; geval 5://5 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 146); digitalWrite (LatchPin, HOOG); pauze; geval 6://6 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 130); digitalWrite (LatchPin, HOOG); pauze; geval 7://7 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 248); digitalWrite (LatchPin, HOOG); pauze; geval 8://8 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 128); digitalWrite (LatchPin, HOOG); pauze; geval 9://9 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 8 + 144); digitalWrite (LatchPin, HOOG); pauze; } vertraging(1); switch (tientallen) { case 0://0 digitalWrite (latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 192 ); digitalWrite (LatchPin, HOOG); pauze; geval 1://1 digitalWrite (latchPin, LAAG); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 249); digitalWrite (LatchPin, HOOG); pauze; geval 2://2 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 164); digitalWrite (LatchPin, HOOG); pauze; geval 3://3 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 176); digitalWrite (LatchPin, HOOG); pauze; geval 4://4 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 153); digitalWrite (LatchPin, HOOG); pauze; geval 5://5 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 4 + 146); digitalWrite (LatchPin, HOOG); pauze; } vertraging(1); switch (honderden) { case 0://0 digitalWrite (latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 64); digitalWrite (LatchPin, HOOG); pauze; geval 1://1 digitalWrite (latchPin, LAAG); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 121); digitalWrite (LatchPin, HOOG); pauze; geval 2://2 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 36); digitalWrite (LatchPin, HOOG); pauze; geval 3://3 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 48); digitalWrite (LatchPin, HOOG); pauze; geval 4://4 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 25); digitalWrite (LatchPin, HOOG); pauze; geval 5://5 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 18); digitalWrite (LatchPin, HOOG); pauze; geval 6://6 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 2); digitalWrite (LatchPin, HOOG); pauze; geval 7://7 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 120); digitalWrite (LatchPin, HOOG); pauze; geval 8://8 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 0); digitalWrite (LatchPin, HOOG); pauze; geval 9://9 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift * 2 + 16); digitalWrite (LatchPin, HOOG); pauze; } vertraging(1); switch (duizenden) { case 0://0 digitalWrite (latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 192 ); digitalWrite (LatchPin, HOOG); //vertraging (500); pauze; geval 1://1 digitalWrite (latchPin, LAAG); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 249); digitalWrite (LatchPin, HOOG); //vertraging (500); pauze; geval 2://2 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 164); digitalWrite (LatchPin, HOOG); //vertraging (500); pauze; geval 3://3 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 176); digitalWrite (LatchPin, HOOG); //vertraging (500); pauze; geval 4://4 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 153); digitalWrite (LatchPin, HOOG); //vertraging (500); pauze; geval 5://5 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 146); digitalWrite (LatchPin, HOOG); //vertraging (500); pauze; geval 6://6 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 130); digitalWrite (LatchPin, HOOG); //vertraging (500); pauze; geval 7://7 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 248); digitalWrite (LatchPin, HOOG); //vertraging (500); pauze; geval 8://8 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 128); digitalWrite (LatchPin, HOOG); pauze; geval 9://9 digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, shift>> 8 ); shiftOut(dataPin, clockPin, MSBFIRST, shift + 152); digitalWrite (LatchPin, HOOG); pauze; } vertraging(1); // alarmsectie if (HOUR ==alarmHour &&MINUT ==alarmMinute) {digitalWrite (13, HIGH); } else { digitalWrite(13, LAAG); }}
Stel de tijd inArduino
aangezien de ds1307 gevoelig is voor wegdrijven van de juiste tijd. Met dit programma kunt u de tijd instellen via de seriële monitor. Als je ziet dat de tijd niet correct is, plug je gewoon de rtc-module in de arduino en upload je dit programma. Voer vervolgens de Seriële Monitor in en stel vervolgens de juiste datum, maand, jaar, tijd in. Upload dan eenvoudig het andere programma en de juiste tijd wordt weergegeven op het 7-segments display.
/* RealTimeClockDS1307 - bibliotheek om een ​​DS1307 RTC-module aan te sturen Copyright (c) 2011 David H. Brown. Alle rechten voorbehouden Veel dank aan John Waters en Maurice Ribble voor hun eerdere en zeer behulpzame werk (zelfs als ik uiteindelijk geen van hun code heb gebruikt):- http://combustory.com/wiki/index.php/RTC1307_ -_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 Deze bibliotheek is gratis software; u kunt het herdistribueren en/of wijzigen onder de voorwaarden van de GNU Lesser General Public License zoals gepubliceerd door de Free Software Foundation; ofwel versie 2.1 van de Licentie, of (naar uw keuze) een latere versie. Deze bibliotheek wordt verspreid in de hoop dat het nuttig zal zijn, maar ZONDER ENIGE GARANTIE; zonder zelfs de impliciete garantie van VERKOOPBAARHEID of GESCHIKTHEID VOOR EEN BEPAALD DOEL. Zie de GNU Lesser General Public License voor meer details. U zou samen met deze bibliotheek een kopie van de GNU Lesser General Public License moeten hebben ontvangen; zo niet, schrijf dan naar de Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#include #include //RealTimeClock RTC;// =new RealTimeClock();#define Display_Clock_Every_N_Seconds 1#define Display_ShortHelp_Every_N_Seconds 25//#define TEST_Squarewave//#define TEST_StopStart//#define TEST_1224Switchint count=0;char formatted[] 00:00:00x;void setup() {// Wire.begin(); Serial.begin(9600);} void loop() {if(Serial.available()) { processCommand(); } vertraging (1000); RTC.readClock(); tellen++; if(count % Display_Clock_Every_N_Seconds ==0){ Serial.print(count); Serieel.print(":"); RTC.getFormatted(geformatteerd); Serial.print (geformatteerd); Serieel.println(); } if(count % Display_ShortHelp_Every_N_Seconds ==0) { Serial.println("Verzenden? voor een lijst met opdrachten."); }#ifdef TEST_Squarewaveif(count%10 ==0){ switch(count/10 % 6) { case 0:Serial.print("Squarewave uitgeschakeld (lage impedantie):"); RTC.sqwUitschakelen (0); Serial.println((int) RTC.readData(7)); pauze; geval 1:Serial.print ("Squarewave uitgeschakeld (hoge impedantie):"); RTC.sqwUitschakelen(1); Serial.println((int) RTC.readData(7)); pauze; geval 2:Serial.println ("Squarewave ingeschakeld op 1 Hz"); RTC.sqwEnable(RTC.SQW_1Hz); pauze; geval 3:Serial.println ("Squarewave ingeschakeld op 4,096 kHz"); RTC.sqwEnable(RTC.SQW_4kHz); pauze; geval 4:Serial.println ("Squarewave ingeschakeld op 8.192 kHz"); RTC.sqwEnable(RTC.SQW_8kHz); pauze; geval 5:Serial.println ("Squarewave ingeschakeld op 32,768 kHz"); RTC.sqwInschakelen (RTC.SQW_32kHz); pauze; standaard:Serial.println ("Squarewave-test niet gedefinieerd"); }//switch}#endif#ifdef TEST_StopStartif(count%10 ==0){ if(!RTC.isStopped()) { if(RTC.getSeconds() <45) { Serial.println("Stopt de klok voor 10 seconden "); RTC.stop(); }//als we genoeg tijd hebben } else { RTC.setSeconds(RTC.getSeconds()+11); RTC.start(); Serial.println ("Toevoegen van 11 seconden en herstarten klok"); }}//if op een veelvoud van 10 tellen#endif#ifdef TEST_1224Switch if(count%10 ==0) { if(count %20 ==0) { Serial.println("overschakelen naar 12-uurs tijd"); RTC.switchTo12h(); RTC.setClock(); } else { Serial.println("overschakelen naar 24-uurs tijd"); RTC.switchTo24h(); RTC.setClock(); } }#endif}void processCommand() { if(!Serial.available()) { return; } char opdracht =Serial.read(); int in,in2; switch (commando) { case 'H':case 'h':in=SerialReadPosInt(); RTC.setHours(in); RTC.setClock(); Serial.print("Uren instellen op "); Serieel.println(in); pauze; geval 'I':geval 'i':in=SerialReadPosInt(); RTC.setMinuten(in); RTC.setClock(); Serial.print("minuten instellen op "); Serieel.println(in); pauze; case 'S':case 's':in=SerialReadPosInt(); RTC.setSeconden (in); RTC.setClock(); Serial.print("Seconden instellen op "); Serieel.println(in); pauze; case 'Y':case 'y':in=SerialReadPosInt(); RTC.setJaar(in); RTC.setClock(); Serial.print("Jaar instellen op "); Serieel.println(in); pauze; geval 'M':geval 'm':in=SerialReadPosInt(); RTC.setMonth(in); RTC.setClock(); Serial.print("Maand instellen op "); Serieel.println(in); pauze; geval 'D':geval 'd':in=SerialReadPosInt(); RTC.setDate(in); RTC.setClock(); Serial.print("Datum instellen op "); Serieel.println(in); pauze; case 'W':Serial.print("Dag van de week is "); Serial.println((int) RTC.getDayOfWeek()); pauze; geval 'w':in=SerialReadPosInt(); RTC.setDayOfWeek(in); RTC.setClock(); Serial.print("Dag van de week instellen op "); Serieel.println(in); pauze; geval 't':geval 'T':if(RTC.is12hour()) { RTC.switchTo24h(); Serial.println("Overschakelen naar 24-uurs klok."); } else { RTC.switchTo12h(); Serial.println("Overschakelen naar 12-uurs klok."); } RTC.setClock(); pauze; geval 'A':geval 'a':if(RTC.is12hour()) { RTC.setAM(); RTC.setClock(); Serial.println("Stel AM in."); } else { Serial.println("(Stel alleen uren in in 24-uurs modus.)"); } pauze; geval 'P':geval 'p':if(RTC.is12hour()) { RTC.setPM(); RTC.setClock(); Serial.println("Stel PM in."); } else { Serial.println("(Stel alleen uren in in 24-uurs modus.)"); } pauze; geval 'q':RTC.sqwEnable(RTC.SQW_1Hz); Serial.println ("Vierkante golfuitgang ingesteld op 1Hz"); pauze; geval 'Q':RTC.sqwDisable(0); Serial.println ("Vierkante golfuitgang uitgeschakeld (laag)"); pauze; geval 'z':RTC.start(); Serial.println("Klokoscillator gestart."); pauze; geval 'Z':RTC.stop(); Serial.println("Klokoscillator gestopt."); pauze; geval '>':in=SerialReadPosInt(); in2=SerialReadPosInt(); RTC.writeData (in, in2); Serial.print("Schrijf naar registratie "); Serieafdruk(in); Serial.print(" de waarde "); Serieel.println(in2); pauze; case '<':in=SerialReadPosInt(); in2=RTC.readData(in); Serial.print("Lees uit register "); Serieafdruk(in); Serial.print(" de waarde "); Serieel.println(in2); pauze; default:Serial.println("Onbekende opdracht. Probeer deze:"); Serial.println(" h## - stel uren in d## - stel datum in"); Serial.println ("i## - stel minuten in m## - stel maand in"); Serial.println ("s## - set Seconds y## - set Year"); Serial.println ("w## - stel een willekeurige dag van de week in"); Serial.println(" t - 24-uurs modus schakelen"); Serial.println ("a - stel AM p - stel PM in"); Serieel.println(); Serial.println ("z - startklok Z - stopklok"); Serial.println ("q - SQW/OUT =1Hz Q - stop SQW/OUT"); Serieel.println(); Serial.println(">##,### - schrijf om ## de waarde ###" te registreren); Serial.println(" <## - lees de waarde in register ##"); }//schakel de opdracht in }//lees numerieke tekens in totdat er iets anders//of geen gegevens meer beschikbaar zijn op serial.int SerialReadPosInt() { int i =0; boolean gedaan=false; while(Serial.available() &&!done) { char c =Serial.read(); if (c>='0' &&c <='9') { i =i * 10 + (c-'0'); } else { gedaan =waar; } } return i;}
RealTimeClockDS1307.cppC/C++
Dit is een van de bibliotheekbestanden van de realtimeklok. Maak een map aan met de naam "RealTimeClockDS1307" en kopieer deze naar deze map. Dat is alles wat je hoeft te doen. U hoeft het niet te compileren.
/* RealTimeClockDS1307 - bibliotheek om een ​​DS1307 RTC-module te besturen Copyright (c) 2011 David H. Brown. Alle rechten voorbehouden v0.92 Bijgewerkt voor Arduino 1.00; niet opnieuw getest op eerdere versies Veel dank aan John Waters en Maurice Ribble voor hun eerdere en zeer nuttige werk (zelfs als ik uiteindelijk geen van hun code heb gebruikt):- http://combustory.com/wiki/index .php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 Deze bibliotheek is gratis software; u kunt het herdistribueren en/of wijzigen onder de voorwaarden van de GNU Lesser General Public License zoals gepubliceerd door de Free Software Foundation; ofwel versie 2.1 van de Licentie, of (naar uw keuze) een latere versie. Deze bibliotheek wordt verspreid in de hoop dat het nuttig zal zijn, maar ZONDER ENIGE GARANTIE; zonder zelfs de impliciete garantie van VERKOOPBAARHEID of GESCHIKTHEID VOOR EEN BEPAALD DOEL. Zie de GNU Lesser General Public License voor meer details. U zou samen met deze bibliotheek een kopie van de GNU Lesser General Public License moeten hebben ontvangen; zo niet, schrijf dan naar de Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/ /******************** ********************************************** ****** * Inclusief ************************************ ************************************/#include "RealTimeClockDS1307.h"#include /************************************************** ******************************* * Definities **************** ********************************************** ***********/#define DS1307_I2C_ADDRESS 0x68 // Dit is het I2C-adres/************************* ********************************************** *** * Constructeurs ********************************************* *******************************/RealTimeClockDS1307::RealTimeClockDS1307(){ Wire.begin(); //mag NIET proberen de klok te lezen voordat //Wire.begin() niet is aangeroepen; readClock() blijft hangen. //Gelukkig lijkt het erop dat u Wire.begin() //meerdere keren kunt aanroepen zonder nadelig effect).} /************************* ********************************************** ***** * Gebruikers-API ***************************************** ***********************************//***** CHIP LEZEN/SCHRIJVEN *** ***/void RealTimeClockDS1307::readClock(){ // Reset de registeraanwijzer Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write ((uint8_t) 0x00); Wire.endTransmission(); Wire.requestFrom (DS1307_I2C_ADDRESS, 8); _reg0_sec =Draad.lezen(); _reg1_min =Draad.lezen(); _reg2_hour =Draad.lezen(); _reg3_day =Wire.read(); _reg4_date =Wire.read(); _reg5_month =Wire.read(); _reg6_year =Draad.lezen(); _reg7_sqw =Wire.read();}void RealTimeClockDS1307::setClock(){ //om paranoïde te zijn, gaan we eerst de klok stoppen //om ervoor te zorgen dat we geen rollovers hebben terwijl we //schrijven:schrijfData(0,0x80); // nu schrijven we alles *behalve* de tweede Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write ((uint8_t) 0x01); Wire.write(_reg1_min); Wire.write(_reg2_hour); Wire.write(_reg3_day); Wire.write(_reg4_date); Wire.write(_reg5_maand); Wire.write(_reg6_jaar); Wire.endTransmission(); // nu gaan we de seconden schrijven; we hoefden // niet bij te houden of de klok al liep, omdat //_reg0_sec al weet wat we willen dat het is. Deze // zal de klok opnieuw starten terwijl deze de nieuwe secondenwaarde schrijft. writeData(0,_reg0_sec); }void RealTimeClockDS1307::stop(){ //"Bit 7 van register 0 is de klok-stop (CH) bit. //Als deze bit is ingesteld op een 1, is de oscillator uitgeschakeld." _reg0_sec =_reg0_sec | 0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::start(){ //"Bit 7 van register 0 is de klok-stop (CH) bit. //Als deze bit is ingesteld op een 1, is de oscillator uitgeschakeld." _reg0_sec =_reg0_sec &~0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::writeData(byte regNo, byte value){ if(regNo> 0x3F) { return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.write (waarde); Wire.endTransmission();}void RealTimeClockDS1307::writeData(byte regNo, void * source, int length){ char * p =(char*) source; if (regNo> 0x3F || lengte> 0x3F) { return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write(regNo); for(int i=0; i 0x3F) { return 0xff; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.endTransmission(); Wire.requestFrom (DS1307_I2C_ADDRESS, 1); return Wire.read();}void RealTimeClockDS1307::readData(byte regNo, void * dest, int length){ char * p =(char*) dest; if (regNo> 0x3F || lengte> 0x3F) { return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.endTransmission(); Wire.requestFrom (DS1307_I2C_ADDRESS, lengte); for(int i=0; i 3) { return; } //bit 4 is ingeschakeld (0x10); //bit 7 is de huidige uitvoerstatus indien uitgeschakeld _reg7_sqw =_reg7_sqw &0x80 | 0x10 | frequentie; writeData (0x07, _reg7_sqw);}void RealTimeClockDS1307::sqwDisable(boolean outputLevel){ //bit 7 0x80 output + bit 4 0x10 activeer beide naar nul, // de OR met de boolean verschoven naar bit 7 _reg7_sqw =_reg7_sqw &~ 0x90 | (uitgangsniveau <<7); writeData (0x07, _reg7_sqw); //opmerking:volgens het gegevensblad, "OUT (Output control):Deze bit regelt // het uitgangsniveau van de SQW/OUT-pin wanneer de blokgolf //output is uitgeschakeld. Als SQWE =0, het logische niveau op de //SQW/OUT pin is 1 als OUT =1 en is 0 als OUT =0." //"De SQW/OUT-pin is open drain en vereist een externe // pull-up-weerstand." //Het is vermeldenswaard dat op het Sparkfun-breakout-bord, //BOB-00099, een LED verbonden met de SQW-pin via een weerstand naar //Vcc+5V oplichtte wanneer OUT=0 en donker was toen OUT=1, de / /tegenovergestelde van wat ik had verwacht totdat ik me herinnerde dat het // een open afvoer is (google het als dat nodig is). Kortom, ze betekenen niet zozeer een logisch niveau (bijv. +3,3V rel Gnd) als wel //hoge of lage *impeadantie* naar aarde (afvoer). So High is in feite // een open schakelaar. Laag maakt verbinding met aarde.}/***** GETTERS ******/boolean RealTimeClockDS1307::is12hour() { //12-hour mode heeft bit 6 van het uurregister hoog rendement ingesteld ((_reg2_hour &0x40) ==0x40);}boolean RealTimeClockDS1307::isPM(){ //indien in 12-uurs modus, maar 5 van het uurregister geeft PM aan if(is12hour()) {return ((_reg2_hour &0x20) ==0x20); } //anders, laten we elk moment met het uur>11 als PM beschouwen:return (getHours()> 11);}boolean RealTimeClockDS1307::isStopped(){ //bit 7 van het secondenregister stopt de klok bij high return ((_reg0_sec &0x80) ==0x80);}int RealTimeClockDS1307::getHours(){ if(is12hour()) { //exclusief bit 5, de am/pm-indicator retourneert bcdToDec(_reg2_hour &0x1f); } //bits 4-5 zijn tientallen uren return bcdToDec(_reg2_hour &0x3f);}int RealTimeClockDS1307::getMinutes(){ //kan maskeren met 0x7f maar zou niet nodig moeten zijn om bcdToDec(_reg1_min);}int RealTimeClockDS1307::getSeconds(){ // moet oscillator start/stop bit 7 maskeren return bcdToDec(_reg0_sec &0x7f);}int RealTimeClockDS1307::getYear(){ return bcdToDec(_reg6_year);}int RealTimeClockDS1307::getMonth(){ // zou kunnen maskeren met 0x1f, maar zou niet nodig moeten zijn om bcdToDec(_reg5_month);}int RealTimeClockDS1307::getDate(){ //kon maskeren met 0x3f maar zou niet moeten moeten terugkeren naar bcdToDec(_reg4_date);}int RealTimeClockDS1307::getDay( ){ return getDate();}int RealTimeClockDS1307::getDayOfWeek(){ // zou kunnen maskeren met 0x07 maar zou niet nodig moeten zijn om bcdToDec(_reg3_day);}void RealTimeClockDS1307::getFormatted(char * buffer){ int i=0; // doel string formaat:YY-MM-DD HH:II:SS buffer [i++]=highNybbleToASCII(_reg6_year); buffer[i++]=lowNybbleToASCII(_reg6_year); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg5_month &0x1f); buffer[i++]=lowNybbleToASCII(_reg5_month); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg4_date &0x3f); buffer[i++]=lowNybbleToASCII(_reg4_date); buffer[i++]=' '; if(is12hour()) {buffer[i++]=highNybbleToASCII(_reg2_hour &0x1f); } else { buffer[i++]=highNybbleToASCII(_reg2_hour &0x3f); } buffer[i++]=lowNybbleToASCII(_reg2_hour); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg1_min &0x7f); buffer[i++]=lowNybbleToASCII(_reg1_min); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg0_sec &0x7f); buffer[i++]=lowNybbleToASCII(_reg0_sec); if(is12hour()) { if(isPM()) { buffer[i++]='P'; } else { buffer[i++]='A'; } } buffer[i++]=0x00;}void RealTimeClockDS1307::getFormatted2k(char * buffer){ buffer[0]='2'; buffer[1]='0'; getFormatted(&buffer[2]);}/**** SETTERS *****/void RealTimeClockDS1307::setSeconds(int s){ if (s <60 &&s>=0) { //need to preserve oscillator bit _reg0_sec =decToBcd(s) | (_reg0_sec &0x80); }}void RealTimeClockDS1307::setMinutes(int m){ if (m <60 &&m>=0) { _reg1_min =decToBcd(m); }}void RealTimeClockDS1307::setHours(int h){ if (is12hour()) { if (h>=1 &&h <=12) { //preserve 12/24 and AM/PM bits _reg2_hour =decToBcd(h) | (_reg2_hour &0x60); } } else { if (h>=0 &&h <=24) { //preserve 12/24 bit _reg2_hour =decToBcd(h) | (_reg2_hour &0x40); } }//else}//setHoursvoid RealTimeClockDS1307::set24h(){ //"Bit 6 of the hours register is defined as the //"12- or 24-hour mode select bit. //"When high, the 12-hour mode is selected" //So, mask the curent value with the complement turn off that bit:_reg2_hour =_reg2_hour &~0x40; }void RealTimeClockDS1307::setAM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 to set 12-hour mode and also //turn off the PM bit by masking with the complement _reg2_hour =_reg2_hour &~0x20 | 0x40;}void RealTimeClockDS1307::setPM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 and 0x20 to set 12-hour mode and also //turn on the PM bit:_reg2_hour =_reg2_hour | 0x60;}void RealTimeClockDS1307::switchTo12h(){ if(is12hour()) { return; } int h =getHours(); if (h <12) { setAM(); } else { h =h-12; setPM(); } if (h==0) { h=12; } setHours(h);}void RealTimeClockDS1307::switchTo24h(){ if(!is12hour()) { return; } int h =getHours(); if(h==12) {//12 PM is just 12; 12 AM is 0 hours. h =0; } if (isPM()) {//if it was 12 PM, then h=0 above and so we're back to 12:h =h+12; } set24h(); setHours(h);}void RealTimeClockDS1307::setDayOfWeek(int d){ if (d> 0 &&d <8) { _reg3_day =decToBcd(d); }}void RealTimeClockDS1307::setDate(int d){ if (d> 0 &&d <32) { _reg4_date =decToBcd(d); }}void RealTimeClockDS1307::setDay(int d){ setDate(d);}void RealTimeClockDS1307::setMonth(int m){ if (m> 0 &&m <13) { _reg5_month =decToBcd(m); }}void RealTimeClockDS1307::setYear(int y){ if (y>=0 &&y <100) { _reg6_year =decToBcd(y); }}/***************************************** * Private methods *****************************************/byte RealTimeClockDS1307::decToBcd(byte b){ return ( ((b/10) <<4) + (b%10) );}// Convert binary coded decimal to normal decimal numbersbyte RealTimeClockDS1307::bcdToDec(byte b){ return ( ((b>> 4)*10) + (b%16) );}char RealTimeClockDS1307::lowNybbleToASCII(byte b) { b =b &0x0f; if(b <10) { //0 is ASCII 48 return 48+b; } //A is ASCII 55 return 55+b;}char RealTimeClockDS1307::highNybbleToASCII(byte b){ return lowNybbleToASCII(b>> 4);}/***** INSTANCE *******/RealTimeClockDS1307 RTC =RealTimeClockDS1307();
ReadmeClojure
Copy this also into the same folder you created named "RealTimeClockDS1307".
My goal in creating yet another DS1307 library was to provideeasy access to some of the other functions I needed from the chip,specifically its square wave output and its battery-backed RAM.## Documentation@todo Mostly comments in `RealTimeClockDS1307.h`## Examples (in /examples folder)- `RealTimeClockDS1307_Test.pde` allow you to turn the clock on/off,set date/time, set 12/24h, [de]activate the square wave, andread/write memory from the Serial Monitor.- `RealTimeClockDS1307.fz` is a Fritzing breadboard layout showingthe basic hookup of the Sparkfun RTC module to an Arduino. Includedis an optional resistor+LED to show the square wave (note that it'san open drain, so you hook up to it rather differently than, say, pin 13).## Changelog##### Version 0.95* Reverse renaming of getDate() and setDate(), now getDay() is calling getDate() and setDay() is calling setDate()* Readme improvements##### Version 0.94* changed getDate() to getDay() and setDate() to setDay()* updated keywords.txt* updated example##### Version 0.93* added keywords.txt for syntax highlighting##### Version 0.92 RC* Updated for Arduino 1.00; testing with Andreas Giemza (hurik)##### Version 0.91* added multi-byte read/write##### Version 0.9 RC* initial release## Future - web page documentation## CreditsMuch thanks to John Waters and Maurice Ribble for theirearlier and very helpful work (even if I didn't wind upusing any of their code):- [http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock](http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock)- [http://www.glacialwanderer.com/hobbyrobotics/?p=12](http://www.glacialwanderer.com/hobbyrobotics/?p=12)## CopyrightRealTimeClockDS1307 - library to control a DS1307 RTC moduleCopyright (c) 2011 David H. Brown. All rights reserved## License This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
RealTimeClockDS1307.hC/C++
This is the main header file of the real time clock. Copy this also into the folder you previously created named "RealTimeClockDS1307". Now you have all the files for the Real Time Clock. Enter the arduino ide and under the 'Sketch' menu click on the 'include library' option and then search your folder under the 'Add .ZIP Library". This will do the trick and you will now be able to set the time in the RTC module.
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef RealTimeClockDS1307_h#define RealTimeClockDS1307_h #if defined(ARDUINO) &&ARDUINO>=100 #include "Arduino.h" #else #include "WProgram.h" #endif//#include //#include  //need/want 'boolean' and 'byte' types used by Arduino//#undef round is required to avoid a compile-time//"expected unqualified-id before 'double'" error in math.h//see:http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247924528/3#undef round #include #define ARDUINO_PIN_T uint8_tclass RealTimeClockDS1307{ private:byte _reg0_sec; byte _reg1_min; byte _reg2_hour; byte _reg3_day; byte _reg4_date; byte _reg5_month; byte _reg6_year; byte _reg7_sqw; byte decToBcd(byte); byte bcdToDec(byte); char lowNybbleToASCII(byte); char highNybbleToASCII(byte); public:RealTimeClockDS1307(); void readClock();//read registers (incl sqw) to local store void setClock();//update clock registers from local store void stop();//immediate; does not require setClock(); void start();//immediate; does not require setClock(); void sqwEnable(byte);//enable the square wave with the specified frequency void sqwDisable(boolean);//disable the square wave, setting output either high or low void writeData(byte, byte);//write a single value to a register void writeData(byte, void *, int);//write several values consecutively byte readData(byte);//read a single value from a register void readData(byte, void *, int);//read several values into a buffer int getHours(); int getMinutes(); int getSeconds(); int getYear(); int getMonth(); int getDate(); int getDay(); int getDayOfWeek(); boolean is12hour(); boolean isPM(); boolean isStopped(); //getFormatted writes into a char array provided by you. Format is:// YY-MM-DD HH:II:SS ... plus "A" or "P" if in 12-hour mode //and of course a NULL terminator. So, [18] for 24h or [19] for 12h void getFormatted(char *);//see comment above void getFormatted2k(char *);//as getFormatted, but with "20" prepended //must also call setClock() after any of these //before next readClock(). Note that invalid dates are not //corrected by the clock. All the clock knows is when it should //roll over to the next month rather than the next date in the same month. void setSeconds(int); void setMinutes(int); //setHours rejects values out of range for the current 12/24 mode void setHours(int); void setAM();//does not consider hours; see switchTo24() void setPM();//does not consider hours; see switchTo24() void set24h();//does not consider hours; see switchTo24() void switchTo24h();//returns immediately if already 24h void switchTo12h();//returns immediately if already 12h void setDayOfWeek(int);//incremented at midnight; not set by date (no fixed meaning) void setDate(int);//allows 1-31 for *all* months. void setDay(int); void setMonth(int); void setYear(int); //squarewave frequencies:static const byte SQW_1Hz=0x00; static const byte SQW_4kHz=0x01;//actually 4.096kHz static const byte SQW_8kHz=0x02;//actually 8.192kHz static const byte SQW_32kHz=0x03;//actually 32.768kHz};extern RealTimeClockDS1307 RTC;#endif
another fileC/C++
add this to the 'RealTimeClockDS1307' folder.
########################################## Syntax Coloring Map RealTimeClockDS1307################################################################################# Instances (KEYWORD2)#######################################RTC KEYWORD2########################################## Methods and Functions (KEYWORD2)#########################################readClock KEYWORD2setClock KEYWORD2stop KEYWORD2start KEYWORD2sqwEnable KEYWORD2sqwDisable KEYWORD2writeData KEYWORD2readData KEYWORD2getHours KEYWORD2getMinutes KEYWORD2getSeconds KEYWORD2getYear KEYWORD2getMonth KEYWORD2getDate KEYWORD2getDay KEYWORD2getDayOfWeek KEYWORD2is12hour KEYWORD2isPM KEYWORD2isStopped KEYWORD2getFormatted KEYWORD2getFormatted2k KEYWORD2setSeconds KEYWORD2setMinutes KEYWORD2setHours KEYWORD2setAM KEYWORD2setPM KEYWORD2set24h KEYWORD2switchTo24h KEYWORD2switchTo12h KEYWORD2setDayOfWeek KEYWORD2setDate KEYWORD2setDay KEYWORD2setMonth KEYWORD2setYear KEYWORD2########################################## Constants (LITERAL1)#########################################SQW_1Hz LITERAL1SQW_4kHz LITERAL1SQW_8kHz LITERAL1SQW_32kHz LITERAL1
RTClib filesC#
create a folder named 'RTClib' and add the following files into it
########################################## Syntax Coloring Map RealTimeClockDS1307################################################################################# Instances (KEYWORD2)#######################################RTC KEYWORD2########################################## Methods and Functions (KEYWORD2)#########################################readClock KEYWORD2setClock KEYWORD2stop KEYWORD2start KEYWORD2sqwEnable KEYWORD2sqwDisable KEYWORD2writeData KEYWORD2readData KEYWORD2getHours KEYWORD2getMinutes KEYWORD2getSeconds KEYWORD2getYear KEYWORD2getMonth KEYWORD2getDate KEYWORD2getDay KEYWORD2getDayOfWeek KEYWORD2is12hour KEYWORD2isPM KEYWORD2isStopped KEYWORD2getFormatted KEYWORD2getFormatted2k KEYWORD2setSeconds KEYWORD2setMinutes KEYWORD2setHours KEYWORD2setAM KEYWORD2setPM KEYWORD2set24h KEYWORD2switchTo24h KEYWORD2switchTo12h KEYWORD2setDayOfWeek KEYWORD2setDate KEYWORD2setDay KEYWORD2setMonth KEYWORD2setYear KEYWORD2########################################## Constants (LITERAL1)#########################################SQW_1Hz LITERAL1SQW_4kHz LITERAL1SQW_8kHz LITERAL1SQW_32kHz LITERAL1
library.properties(name)C/C++
add this to the RTClib folder
My goal in creating yet another DS1307 library was to provideeasy access to some of the other functions I needed from the chip,specifically its square wave output and its battery-backed RAM.## Documentation@todo Mostly comments in `RealTimeClockDS1307.h`## Examples (in /examples folder)- `RealTimeClockDS1307_Test.pde` allow you to turn the clock on/off,set date/time, set 12/24h, [de]activate the square wave, andread/write memory from the Serial Monitor.- `RealTimeClockDS1307.fz` is a Fritzing breadboard layout showingthe basic hookup of the Sparkfun RTC module to an Arduino. Includedis an optional resistor+LED to show the square wave (note that it'san open drain, so you hook up to it rather differently than, say, pin 13).## Changelog##### Version 0.95* Reverse renaming of getDate() and setDate(), now getDay() is calling getDate() and setDay() is calling setDate()* Readme improvements##### Version 0.94* changed getDate() to getDay() and setDate() to setDay()* updated keywords.txt* updated example##### Version 0.93* added keywords.txt for syntax highlighting##### Version 0.92 RC* Updated for Arduino 1.00; testing with Andreas Giemza (hurik)##### Version 0.91* added multi-byte read/write##### Version 0.9 RC* initial release## Future - web page documentation## CreditsMuch thanks to John Waters and Maurice Ribble for theirearlier and very helpful work (even if I didn't wind upusing any of their code):- [http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock](http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock)- [http://www.glacialwanderer.com/hobbyrobotics/?p=12](http://www.glacialwanderer.com/hobbyrobotics/?p=12)## CopyrightRealTimeClockDS1307 - library to control a DS1307 RTC moduleCopyright (c) 2011 David H. Brown. All rights reserved## License This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
RTClibC/C++
add this to the RTClib folder
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/ /****************************************************************************** * Includes ******************************************************************************/#include "RealTimeClockDS1307.h"#include /****************************************************************************** * Definitions ******************************************************************************/#define DS1307_I2C_ADDRESS 0x68 // This is the I2C address/****************************************************************************** * Constructors ******************************************************************************/RealTimeClockDS1307::RealTimeClockDS1307(){ Wire.begin(); //must NOT attempt to read the clock before //Wire.begin() has not been called; readClock() will hang. //Fortunately, it seems that you can call Wire.begin() //multiple times with no adverse effect).} /****************************************************************************** * User API ******************************************************************************//***** CHIP READ/WRITE ******/void RealTimeClockDS1307::readClock(){ // Reset the register pointer Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x00); Wire.endTransmission(); Wire.requestFrom(DS1307_I2C_ADDRESS, 8); _reg0_sec =Wire.read(); _reg1_min =Wire.read(); _reg2_hour =Wire.read(); _reg3_day =Wire.read(); _reg4_date =Wire.read(); _reg5_month =Wire.read(); _reg6_year =Wire.read(); _reg7_sqw =Wire.read();}void RealTimeClockDS1307::setClock(){ //to be paranoid, we're going to first stop the clock //to ensure we don't have rollovers while we're //writing:writeData(0,0x80); //now, we'll write everything *except* the second Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x01); Wire.write(_reg1_min); Wire.write(_reg2_hour); Wire.write(_reg3_day); Wire.write(_reg4_date); Wire.write(_reg5_month); Wire.write(_reg6_year); Wire.endTransmission(); //now, we'll write the seconds; we didn't have to keep //track of whether the clock was already running, because //_reg0_sec already knows what we want it to be. This //will restart the clock as it writes the new seconds value. writeData(0,_reg0_sec); }void RealTimeClockDS1307::stop(){ //"Bit 7 of register 0 is the clock halt (CH) bit. //When this bit is set to a 1, the oscillator is disabled." _reg0_sec =_reg0_sec | 0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::start(){ //"Bit 7 of register 0 is the clock halt (CH) bit. //When this bit is set to a 1, the oscillator is disabled." _reg0_sec =_reg0_sec &~0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::writeData(byte regNo, byte value){ if(regNo> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.write(value); Wire.endTransmission();}void RealTimeClockDS1307::writeData(byte regNo, void * source, int length){ char * p =(char*) source; if(regNo> 0x3F || length> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); for(int i=0; i 0x3F) { return 0xff; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.endTransmission(); Wire.requestFrom(DS1307_I2C_ADDRESS, 1); return Wire.read();}void RealTimeClockDS1307::readData(byte regNo, void * dest, int length){ char * p =(char*) dest; if(regNo> 0x3F || length> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.endTransmission(); Wire.requestFrom(DS1307_I2C_ADDRESS, length); for(int i=0; i 3) { return; } //bit 4 is enable (0x10); //bit 7 is current output state if disabled _reg7_sqw =_reg7_sqw &0x80 | 0x10 | frequency; writeData(0x07, _reg7_sqw);}void RealTimeClockDS1307::sqwDisable(boolean outputLevel){ //bit 7 0x80 output + bit 4 0x10 enable both to zero, //the OR with the boolean shifted up to bit 7 _reg7_sqw =_reg7_sqw &~0x90 | (outputLevel <<7); writeData(0x07, _reg7_sqw); //note:per the data sheet, "OUT (Output control):This bit controls //the output level of the SQW/OUT pin when the square wave //output is disabled. If SQWE =0, the logic level on the //SQW/OUT pin is 1 if OUT =1 and is 0 if OUT =0." //"The SQW/OUT pin is open drain and requires an external //pull-up resistor." //It is worth mentioning that on the Sparkfun breakout board, //BOB-00099, a LED connected to the SQW pin through a resistor to //Vcc+5V illuminated when OUT=0 and was dark when OUT=1, the //opposite of what I expected until I remembered that it is //an open drain (google it if you need to). Basically, they don't //so much mean a logic level (e.g., +3.3V rel Gnd) as they mean //high or low *impeadance* to ground (drain). So High is basically //an open switch. Low connects to ground.}/***** GETTERS ******/boolean RealTimeClockDS1307::is12hour() { //12-hour mode has bit 6 of the hour register set high return ((_reg2_hour &0x40) ==0x40);}boolean RealTimeClockDS1307::isPM(){ //if in 12-hour mode, but 5 of the hour register indicates PM if(is12hour()) { return ((_reg2_hour &0x20) ==0x20); } //otherwise, let's consider any time with the hour>11 to be PM:return (getHours()> 11);}boolean RealTimeClockDS1307::isStopped(){ //bit 7 of the seconds register stopps the clock when high return ((_reg0_sec &0x80) ==0x80);}int RealTimeClockDS1307::getHours(){ if(is12hour()) { //do not include bit 5, the am/pm indicator return bcdToDec(_reg2_hour &0x1f); } //bits 4-5 are tens of hours return bcdToDec(_reg2_hour &0x3f);}int RealTimeClockDS1307::getMinutes(){ //could mask with 0x7f but shouldn't need to return bcdToDec(_reg1_min);}int RealTimeClockDS1307::getSeconds(){ //need to mask oscillator start/stop bit 7 return bcdToDec(_reg0_sec &0x7f);}int RealTimeClockDS1307::getYear(){ return bcdToDec(_reg6_year);}int RealTimeClockDS1307::getMonth(){ //could mask with 0x1f but shouldn't need to return bcdToDec(_reg5_month);}int RealTimeClockDS1307::getDate(){ //could mask with 0x3f but shouldn't need to return bcdToDec(_reg4_date);}int RealTimeClockDS1307::getDay(){ return getDate();}int RealTimeClockDS1307::getDayOfWeek(){ //could mask with 0x07 but shouldn't need to return bcdToDec(_reg3_day);}void RealTimeClockDS1307::getFormatted(char * buffer){ int i=0; //target string format:YY-MM-DD HH:II:SS buffer[i++]=highNybbleToASCII(_reg6_year); buffer[i++]=lowNybbleToASCII(_reg6_year); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg5_month &0x1f); buffer[i++]=lowNybbleToASCII(_reg5_month); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg4_date &0x3f); buffer[i++]=lowNybbleToASCII(_reg4_date); buffer[i++]=' '; if(is12hour()) { buffer[i++]=highNybbleToASCII(_reg2_hour &0x1f); } else { buffer[i++]=highNybbleToASCII(_reg2_hour &0x3f); } buffer[i++]=lowNybbleToASCII(_reg2_hour); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg1_min &0x7f); buffer[i++]=lowNybbleToASCII(_reg1_min); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg0_sec &0x7f); buffer[i++]=lowNybbleToASCII(_reg0_sec); if(is12hour()) { if(isPM()) { buffer[i++]='P'; } else { buffer[i++]='A'; } } buffer[i++]=0x00;}void RealTimeClockDS1307::getFormatted2k(char * buffer){ buffer[0]='2'; buffer[1]='0'; getFormatted(&buffer[2]);}/**** SETTERS *****/void RealTimeClockDS1307::setSeconds(int s){ if (s <60 &&s>=0) { //need to preserve oscillator bit _reg0_sec =decToBcd(s) | (_reg0_sec &0x80); }}void RealTimeClockDS1307::setMinutes(int m){ if (m <60 &&m>=0) { _reg1_min =decToBcd(m); }}void RealTimeClockDS1307::setHours(int h){ if (is12hour()) { if (h>=1 &&h <=12) { //preserve 12/24 and AM/PM bits _reg2_hour =decToBcd(h) | (_reg2_hour &0x60); } } else { if (h>=0 &&h <=24) { //preserve 12/24 bit _reg2_hour =decToBcd(h) | (_reg2_hour &0x40); } }//else}//setHoursvoid RealTimeClockDS1307::set24h(){ //"Bit 6 of the hours register is defined as the //"12- or 24-hour mode select bit. //"When high, the 12-hour mode is selected" //So, mask the curent value with the complement turn off that bit:_reg2_hour =_reg2_hour &~0x40; }void RealTimeClockDS1307::setAM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 to set 12-hour mode and also //turn off the PM bit by masking with the complement _reg2_hour =_reg2_hour &~0x20 | 0x40;}void RealTimeClockDS1307::setPM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 and 0x20 to set 12-hour mode and also //turn on the PM bit:_reg2_hour =_reg2_hour | 0x60;}void RealTimeClockDS1307::switchTo12h(){ if(is12hour()) { return; } int h =getHours(); if (h <12) { setAM(); } else { h =h-12; setPM(); } if (h==0) { h=12; } setHours(h);}void RealTimeClockDS1307::switchTo24h(){ if(!is12hour()) { return; } int h =getHours(); if(h==12) {//12 PM is just 12; 12 AM is 0 hours. h =0; } if (isPM()) {//if it was 12 PM, then h=0 above and so we're back to 12:h =h+12; } set24h(); setHours(h);}void RealTimeClockDS1307::setDayOfWeek(int d){ if (d> 0 &&d <8) { _reg3_day =decToBcd(d); }}void RealTimeClockDS1307::setDate(int d){ if (d> 0 &&d <32) { _reg4_date =decToBcd(d); }}void RealTimeClockDS1307::setDay(int d){ setDate(d);}void RealTimeClockDS1307::setMonth(int m){ if (m> 0 &&m <13) { _reg5_month =decToBcd(m); }}void RealTimeClockDS1307::setYear(int y){ if (y>=0 &&y <100) { _reg6_year =decToBcd(y); }}/***************************************** * Private methods *****************************************/byte RealTimeClockDS1307::decToBcd(byte b){ return ( ((b/10) <<4) + (b%10) );}// Convert binary coded decimal to normal decimal numbersbyte RealTimeClockDS1307::bcdToDec(byte b){ return ( ((b>> 4)*10) + (b%16) );}char RealTimeClockDS1307::lowNybbleToASCII(byte b) { b =b &0x0f; if(b <10) { //0 is ASCII 48 return 48+b; } //A is ASCII 55 return 55+b;}char RealTimeClockDS1307::highNybbleToASCII(byte b){ return lowNybbleToASCII(b>> 4);}/***** INSTANCE *******/RealTimeClockDS1307 RTC =RealTimeClockDS1307();
RTClibC/C++
add this to the RTClib folder. Now you have all the necessary files for the RTClib. Now do the same as I told you with the 'RealTimeClockDS1307' library file.
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef RealTimeClockDS1307_h#define RealTimeClockDS1307_h #if defined(ARDUINO) &&ARDUINO>=100 #include "Arduino.h" #else #include "WProgram.h" #endif//#include //#include  //need/want 'boolean' and 'byte' types used by Arduino//#undef round is required to avoid a compile-time//"expected unqualified-id before 'double'" error in math.h//see:http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247924528/3#undef round #include #define ARDUINO_PIN_T uint8_tclass RealTimeClockDS1307{ private:byte _reg0_sec; byte _reg1_min; byte _reg2_hour; byte _reg3_day; byte _reg4_date; byte _reg5_month; byte _reg6_year; byte _reg7_sqw; byte decToBcd(byte); byte bcdToDec(byte); char lowNybbleToASCII(byte); char highNybbleToASCII(byte); public:RealTimeClockDS1307(); void readClock();//read registers (incl sqw) to local store void setClock();//update clock registers from local store void stop();//immediate; does not require setClock(); void start();//immediate; does not require setClock(); void sqwEnable(byte);//enable the square wave with the specified frequency void sqwDisable(boolean);//disable the square wave, setting output either high or low void writeData(byte, byte);//write a single value to a register void writeData(byte, void *, int);//write several values consecutively byte readData(byte);//read a single value from a register void readData(byte, void *, int);//read several values into a buffer int getHours(); int getMinutes(); int getSeconds(); int getYear(); int getMonth(); int getDate(); int getDay(); int getDayOfWeek(); boolean is12hour(); boolean isPM(); boolean isStopped(); //getFormatted writes into a char array provided by you. Format is:// YY-MM-DD HH:II:SS ... plus "A" or "P" if in 12-hour mode //and of course a NULL terminator. So, [18] for 24h or [19] for 12h void getFormatted(char *);//see comment above void getFormatted2k(char *);//as getFormatted, but with "20" prepended //must also call setClock() after any of these //before next readClock(). Note that invalid dates are not //corrected by the clock. All the clock knows is when it should //roll over to the next month rather than the next date in the same month. void setSeconds(int); void setMinutes(int); //setHours rejects values out of range for the current 12/24 mode void setHours(int); void setAM();//does not consider hours; see switchTo24() void setPM();//does not consider hours; see switchTo24() void set24h();//does not consider hours; see switchTo24() void switchTo24h();//returns immediately if already 24h void switchTo12h();//returns immediately if already 12h void setDayOfWeek(int);//incremented at midnight; not set by date (no fixed meaning) void setDate(int);//allows 1-31 for *all* months. void setDay(int); void setMonth(int); void setYear(int); //squarewave frequencies:static const byte SQW_1Hz=0x00; static const byte SQW_4kHz=0x01;//actually 4.096kHz static const byte SQW_8kHz=0x02;//actually 8.192kHz static const byte SQW_32kHz=0x03;//actually 32.768kHz};extern RealTimeClockDS1307 RTC;#endif
README.mdC/C++
add this to the RTClib library
This is a fork of JeeLab's fantastic real time clock library for Arduino.For details on using this library with an RTC module like the DS1307, see the guide at:https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overviewTo download. click the DOWNLOADS button to the right, and rename the uncompressed folder RTClib.Place the RTClib folder in your *arduinosketchfolder*/libraries/ folder. You may need to create the libraries subfolder if its your first library. Restart the IDE.## CompatibilityMCU | Tested Works | Doesn't Work | Not Tested | Notes------------------ | :----------:| :----------:| :---------:| -----Atmega328 @ 16MHz | X | | | Atmega328 @ 12MHz | X | | | Atmega32u4 @ 16MHz | X | | | Use SDA/SCL on pins D3 & D2Atmega32u4 @ 8MHz | X | | | Use SDA/SCL on pins D3 & D2ESP8266 | X | | | SDA/SCL default to pins 4 & 5 but any two pins can be assigned as SDA/SCL using Wire.begin(SDA,SCL)Atmega2560 @ 16MHz | X | | | Use SDA/SCL on Pins 20 & 21ATSAM3X8E | X | | | Use SDA1 and SCL1ATSAM21D | X | | | ATtiny85 @ 16MHz | X | | | ATtiny85 @ 8MHz | X | | | Intel Curie @ 32MHz | | | X | STM32F2 | | | X | * ATmega328 @ 16MHz :Arduino UNO, Adafruit Pro Trinket 5V, Adafruit Metro 328, Adafruit Metro Mini * ATmega328 @ 12MHz :Adafruit Pro Trinket 3V * ATmega32u4 @ 16MHz :Arduino Leonardo, Arduino Micro, Arduino Yun, Teensy 2.0 * ATmega32u4 @ 8MHz :Adafruit Flora, Bluefruit Micro * ESP8266 :Adafruit Huzzah * ATmega2560 @ 16MHz :Arduino Mega * ATSAM3X8E :Arduino Due * ATSAM21D :Arduino Zero, M0 Pro * ATtiny85 @ 16MHz :Adafruit Trinket 5V * ATtiny85 @ 8MHz :Adafruit Gemma, Arduino Gemma, Adafruit Trinket 3V
RTClib.cppC/C++
name it as above and add it to the RTClib library
// Code by JeeLabs http://news.jeelabs.org/code/// Released to the public domain! Enjoy!#include #include "RTClib.h"#ifdef __AVR__ #include #elif defined(ESP8266) #include #elif defined(ARDUINO_ARCH_SAMD)// nothing special needed#elif defined(ARDUINO_SAM_DUE) #define PROGMEM #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #define Wire Wire1#endif#if (ARDUINO>=100) #include  // capital A so it is error prone on case-sensitive filesystems // Macro to deal with the difference in I2C write functions from old and new Arduino versions. #define _I2C_WRITE write #define _I2C_READ read#else #include  #define _I2C_WRITE send #define _I2C_READ receive#endifstatic uint8_t read_i2c_register(uint8_t addr, uint8_t reg) { Wire.beginTransmission(addr); Wire._I2C_WRITE((byte)reg); Wire.endTransmission(); Wire.requestFrom(addr, (byte)1); return Wire._I2C_READ();}static void write_i2c_register(uint8_t addr, uint8_t reg, uint8_t val) { Wire.beginTransmission(addr); Wire._I2C_WRITE((byte)reg); Wire._I2C_WRITE((byte)val); Wire.endTransmission();}////////////////////////////////////////////////////////////////////////////////// utility code, some of this could be exposed in the DateTime API if neededconst uint8_t daysInMonth [] PROGMEM ={ 31,28,31,30,31,30,31,31,30,31,30,31 };// number of days since 2000/01/01, valid for 2001..2099static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) { if (y>=2000) y -=2000; uint16_t days =d; for (uint8_t i =1; i  2 &&y % 4 ==0) ++days; return days + 365 * y + (y + 3) / 4 - 1;}static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) { return ((days * 24L + h) * 60 + m) * 60 + s;}////////////////////////////////////////////////////////////////////////////////// DateTime implementation - ignores time zones and DST changes// NOTE:also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_secondDateTime::DateTime (uint32_t t) { t -=SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970 ss =t % 60; t /=60; mm =t % 60; t /=60; hh =t % 24; uint16_t days =t / 24; uint8_t leap; for (yOff =0;; ++yOff) { leap =yOff % 4 ==0; if (days <365 + leap) break; days -=365 + leap; } for (m =1;; ++m) { uint8_t daysPerMonth =pgm_read_byte(daysInMonth + m - 1); if (leap &&m ==2) ++daysPerMonth; if (days =2000) year -=2000; yOff =year; m =month; d =day; hh =hour; mm =min; ss =sec;}DateTime::DateTime (const DateTime©):yOff(copy.yOff), m(copy.m), d(copy.d), hh(copy.hh), mm(copy.mm), ss(copy.ss){}static uint8_t conv2d(const char* p) { uint8_t v =0; if ('0' <=*p &&*p <='9') v =*p - '0'; return 10 * v + *++p - '0';}// A convenient constructor for using "the compiler's time":// DateTime now (__DATE__, __TIME__);// NOTE:using F() would further reduce the RAM footprint, see below.DateTime::DateTime (const char* date, const char* time) { // sample input:date ="Dec 26 2009", time ="12:34:56" yOff =conv2d(date + 9); // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec switch (date[0]) { case 'J':m =date[1] =='a' ? 1 :m =date[2] =='n' ? 6 :7; pauze; case 'F':m =2; pauze; case 'A':m =date[2] =='r' ? 4 :8; pauze; case 'M':m =date[2] =='r' ? 3 :5; pauze; case 'S':m =9; pauze; case 'O':m =10; pauze; case 'N':m =11; pauze; case 'D':m =12; pauze; } d =conv2d(date + 4); hh =conv2d(time); mm =conv2d(time + 3); ss =conv2d(time + 6);}// A convenient constructor for using "the compiler's time":// This version will save RAM by using PROGMEM to store it by using the F macro.// DateTime now (F(__DATE__), F(__TIME__));DateTime::DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time) { // sample input:date ="Dec 26 2009", time ="12:34:56" char buff[11]; memcpy_P(buff, date, 11); yOff =conv2d(buff + 9); // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec switch (buff[0]) { case 'J':m =buff[1] =='a' ? 1 :m =buff[2] =='n' ? 6 :7; pauze; case 'F':m =2; pauze; case 'A':m =buff[2] =='r' ? 4 :8; pauze; case 'M':m =buff[2] =='r' ? 3 :5; pauze; case 'S':m =9; pauze; case 'O':m =10; pauze; case 'N':m =11; pauze; case 'D':m =12; pauze; } d =conv2d(buff + 4); memcpy_P(buff, time, 8); hh =conv2d(buff); mm =conv2d(buff + 3); ss =conv2d(buff + 6);}uint8_t DateTime::dayOfTheWeek() const { uint16_t day =date2days(yOff, m, d); return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6}uint32_t DateTime::unixtime(void) const { uint32_t t; uint16_t days =date2days(yOff, m, d); t =time2long(days, hh, mm, ss); t +=SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000 return t;}long DateTime::secondstime(void) const { long t; uint16_t days =date2days(yOff, m, d); t =time2long(days, hh, mm, ss); return t;}DateTime DateTime::operator+(const TimeSpan&span) { return DateTime(unixtime()+span.totalseconds());}DateTime DateTime::operator-(const TimeSpan&span) { return DateTime(unixtime()-span.totalseconds());}TimeSpan DateTime::operator-(const DateTime&right) { return TimeSpan(unixtime()-right.unixtime());}////////////////////////////////////////////////////////////////////////////////// TimeSpan implementationTimeSpan::TimeSpan (int32_t seconds):_seconds(seconds){}TimeSpan::TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds):_seconds((int32_t)days*86400L + (int32_t)hours*3600 + (int32_t)minutes*60 + seconds){}TimeSpan::TimeSpan (const TimeSpan©):_seconds(copy._seconds){}TimeSpan TimeSpan::operator+(const TimeSpan&right) { return TimeSpan(_seconds+right._seconds);}TimeSpan TimeSpan::operator-(const TimeSpan&right) { return TimeSpan(_seconds-right._seconds);}////////////////////////////////////////////////////////////////////////////////// RTC_DS1307 im plementationstatic uint8_t bcd2bin (uint8_t val) { return val - 6 * (val>> 4); }static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }boolean RTC_DS1307::begin(void) { Wire.begin(); return true;}uint8_t RTC_DS1307::isrunning(void) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission(); Wire.requestFrom(DS1307_ADDRESS, 1); uint8_t ss =Wire._I2C_READ(); return !(ss>>7);}void RTC_DS1307::adjust(const DateTime&dt) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); // start at location 0 Wire._I2C_WRITE(bin2bcd(dt.second())); Wire._I2C_WRITE(bin2bcd(dt.minute())); Wire._I2C_WRITE(bin2bcd(dt.hour())); Wire._I2C_WRITE(bin2bcd(0)); Wire._I2C_WRITE(bin2bcd(dt.day())); Wire._I2C_WRITE(bin2bcd(dt.month())); Wire._I2C_WRITE(bin2bcd(dt.year() - 2000)); Wire.endTransmission();}DateTime RTC_DS1307::now() { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission(); Wire.requestFrom(DS1307_ADDRESS, 7); uint8_t ss =bcd2bin(Wire._I2C_READ() &0x7F); uint8_t mm =bcd2bin(Wire._I2C_READ()); uint8_t hh =bcd2bin(Wire._I2C_READ()); Wire._I2C_READ(); uint8_t d =bcd2bin(Wire._I2C_READ()); uint8_t m =bcd2bin(Wire._I2C_READ()); uint16_t y =bcd2bin(Wire._I2C_READ()) + 2000; return DateTime (y, m, d, hh, mm, ss);}Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() { int mode; Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(DS1307_CONTROL); Wire.endTransmission(); Wire.requestFrom((uint8_t)DS1307_ADDRESS, (uint8_t)1); mode =Wire._I2C_READ(); mode &=0x93; return static_cast(mode);}void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(DS1307_CONTROL); Wire._I2C_WRITE(mode); Wire.endTransmission();}void RTC_DS1307::readnvram(uint8_t* buf, uint8_t size, uint8_t address) { int addrByte =DS1307_NVRAM + address; Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(addrByte); Wire.endTransmission(); Wire.requestFrom((uint8_t) DS1307_ADDRESS, size); for (uint8_t pos =0; pos >=3; mode &=0x7; return static_cast(mode);}void RTC_PCF8523::writeSqwPinMode(Pcf8523SqwPinMode mode) { Wire.beginTransmission(PCF8523_ADDRESS); Wire._I2C_WRITE(PCF8523_CLKOUTCONTROL); Wire._I2C_WRITE(mode <<3); Wire.endTransmission();}////////////////////////////////////////////////////////////////////////////////// RTC_DS3231 implementationboolean RTC_DS3231::begin(void) { Wire.begin(); return true;}bool RTC_DS3231::lostPower(void) { return (read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG)>> 7);}void RTC_DS3231::adjust(const DateTime&dt) { Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE((byte)0); // start at location 0 Wire._I2C_WRITE(bin2bcd(dt.second())); Wire._I2C_WRITE(bin2bcd(dt.minute())); Wire._I2C_WRITE(bin2bcd(dt.hour())); Wire._I2C_WRITE(bin2bcd(0)); Wire._I2C_WRITE(bin2bcd(dt.day())); Wire._I2C_WRITE(bin2bcd(dt.month())); Wire._I2C_WRITE(bin2bcd(dt.year() - 2000)); Wire.endTransmission(); uint8_t statreg =read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG); statreg &=~0x80; // flip OSF bit write_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG, statreg);}DateTime RTC_DS3231::now() { Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission(); Wire.requestFrom(DS3231_ADDRESS, 7); uint8_t ss =bcd2bin(Wire._I2C_READ() &0x7F); uint8_t mm =bcd2bin(Wire._I2C_READ()); uint8_t hh =bcd2bin(Wire._I2C_READ()); Wire._I2C_READ(); uint8_t d =bcd2bin(Wire._I2C_READ()); uint8_t m =bcd2bin(Wire._I2C_READ()); uint16_t y =bcd2bin(Wire._I2C_READ()) + 2000; return DateTime (y, m, d, hh, mm, ss);}Ds3231SqwPinMode RTC_DS3231::readSqwPinMode() { int mode; Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE(DS3231_CONTROL); Wire.endTransmission(); Wire.requestFrom((uint8_t)DS3231_ADDRESS, (uint8_t)1); mode =Wire._I2C_READ(); mode &=0x93; return static_cast(mode);}void RTC_DS3231::writeSqwPinMode(Ds3231SqwPinMode mode) { uint8_t ctrl; ctrl =read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL); ctrl &=~0x04; // turn off INTCON ctrl &=~0x18; // set freq bits to 0 if (mode ==DS3231_OFF) { ctrl |=0x04; // turn on INTCN } else { ctrl |=mode; } write_i2c_register(DS3231_ADDRESS, DS3231_CONTROL, ctrl); //Serial.println( read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL), HEX);}
RTClib.hC/C++
that's the name. add it to the RTClib library. Now you have all the files for the RTClib library. Do the same steps to add this to the arduino libraries.
// Code by JeeLabs http://news.jeelabs.org/code/// Released to the public domain! Enjoy!#ifndef _RTCLIB_H_#define _RTCLIB_H_#include class TimeSpan;#define PCF8523_ADDRESS 0x68#define PCF8523_CLKOUTCONTROL 0x0F#define PCF8523_CONTROL_3 0x02#define DS1307_ADDRESS 0x68#define DS1307_CONTROL 0x07#define DS1307_NVRAM 0x08#define DS3231_ADDRESS 0x68#define DS3231_CONTROL 0x0E#define DS3231_STATUSREG 0x0F#define SECONDS_PER_DAY 86400L#define SECONDS_FROM_1970_TO_2000 946684800// Simple general-purpose date/time class (no TZ / DST / leap second handling!)class DateTime {public:DateTime (uint32_t t =0); DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour =0, uint8_t min =0, uint8_t sec =0); DateTime (const DateTime©); DateTime (const char* date, const char* time); DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time); uint16_t year() const { return 2000 + yOff; } uint8_t month() const { return m; } uint8_t day() const { return d; } uint8_t hour() const { return hh; } uint8_t minute() const { return mm; } uint8_t second() const { return ss; } uint8_t dayOfTheWeek() const; // 32-bit times as seconds since 1/1/2000 long secondstime() const; // 32-bit times as seconds since 1/1/1970 uint32_t unixtime(void) const; DateTime operator+(const TimeSpan&span); DateTime operator-(const TimeSpan&span); TimeSpan operator-(const DateTime&right);protected:uint8_t yOff, m, d, hh, mm, ss;};// Timespan which can represent changes in time with seconds accuracy.class TimeSpan {public:TimeSpan (int32_t seconds =0); TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds); TimeSpan (const TimeSpan©); int16_t days() const { return _seconds / 86400L; } int8_t hours() const { return _seconds / 3600 % 24; } int8_t minutes() const { return _seconds / 60 % 60; } int8_t seconds() const { return _seconds % 60; } int32_t totalseconds() const { return _seconds; } TimeSpan operator+(const TimeSpan&right); TimeSpan operator-(const TimeSpan&right);protected:int32_t _seconds;};// RTC based on the DS1307 chip connected via I2C and the Wire libraryenum Ds1307SqwPinMode { OFF =0x00, ON =0x80, SquareWave1HZ =0x10, SquareWave4kHz =0x11, SquareWave8kHz =0x12, SquareWave32kHz =0x13 };class RTC_DS1307 {public:boolean begin(void); static void adjust(const DateTime&dt); uint8_t isrunning(void); static DateTime now(); static Ds1307SqwPinMode readSqwPinMode(); static void writeSqwPinMode(Ds1307SqwPinMode mode); uint8_t readnvram(uint8_t address); void readnvram(uint8_t* buf, uint8_t size, uint8_t address); void writenvram(uint8_t address, uint8_t data); void writenvram(uint8_t address, uint8_t* buf, uint8_t size);};// RTC based on the DS3231 chip connected via I2C and the Wire libraryenum Ds3231SqwPinMode { DS3231_OFF =0x01, DS3231_SquareWave1Hz =0x00, DS3231_SquareWave1kHz =0x08, DS3231_SquareWave4kHz =0x10, DS3231_SquareWave8kHz =0x18 };class RTC_DS3231 {public:boolean begin(void); static void adjust(const DateTime&dt); bool lostPower(void); static DateTime now(); static Ds3231SqwPinMode readSqwPinMode(); static void writeSqwPinMode(Ds3231SqwPinMode mode);};// RTC based on the PCF8523 chip connected via I2C and the Wire libraryenum Pcf8523SqwPinMode { PCF8523_OFF =7, PCF8523_SquareWave1HZ =6, PCF8523_SquareWave32HZ =5, PCF8523_SquareWave1kHz =4, PCF8523_SquareWave4kHz =3, PCF8523_SquareWave8kHz =2, PCF8523_SquareWave16kHz =1, PCF8523_SquareWave32kHz =0 };class RTC_PCF8523 {public:boolean begin(void); void adjust(const DateTime&dt); boolean initialized(void); static DateTime now(); Pcf8523SqwPinMode readSqwPinMode(); void writeSqwPinMode(Pcf8523SqwPinMode mode);};// RTC using the internal millis() clock, has to be initialized before use// NOTE:this clock won't be correct once the millis() timer rolls over (>49d?)class RTC_Millis {public:static void begin(const DateTime&dt) { adjust(dt); } static void adjust(const DateTime&dt); static DateTime now();protected:static long offset;};#endif // _RTCLIB_H_

Schema's

This is the schematic of the project. 7segmentClock.fzz

Productieproces

  1. Strijkplank
  2. Koekoeksklok
  3. Printplaat
  4. Surfboard
  5. Hoe maak je een Arduino+Raspberry Pi-robotplatform
  6. RaspiRobot Board V2
  7. Arduino pov vision-klok
  8. Eenvoudige Word Clock (Arduino)
  9. Infinity spiegelklok
  10. Er is meer dan één reden om een ​​onberispelijke printplaat te maken
  11. Motorconfiguratie begrijpen